Judy Mullarkey
  • Welcome
  • 8th grade math
    • vocabulary
    • State exam practice
  • 6th grade math
    • 6th grade accelerated
    • State exam practice
    • vocabulary
                                                     

                             8th Grade Vocabulary
Current vocabulary will be in blue

Pythagorean Theorem  a^2+b^2=c^2
                                        3^2 +4^2=5^2
                                         9+   16    =  25
     It is a proof of right angles and a way to find missing triangle side lengths
distance formula       sqrt((x1-x2)^2+9y1-y2)^2) 
                                      A formula derived from the pythagorean theorem to find distance of angled lines on a coordinate plane




Foil  first out in last  A way to multiply binomials  
       (x+2)(x+4)   x*x + x*2 
                                    2*x +2*4
                          x^2 + 4x + 8
Factor        A way to make a trinomial into two binomial factors
          

Module 8
Solve system of equations  Where two lines equal each other or meet.
 Parallel lines      No Solution   Same slope different y intercepts, false statement
Infinite solutions   Same line,  Same slope and y intercepts,  true statement 



Module 6
Functions  For every input x there is only one output y
Module 5
exponent  The power something is raised to. The small numbers

Linear When graphed it is a line. 
          It has a constant rate of change
          The exponents for x and y are 1
     Proportional  A line that goes through the origin (0,0)
     Nonproportional A line that does not go through the origin


calculate y intercept  1st find the slope
                                2nd list your information
                                          pick a point
                                                               y=
                                                                m=
                                                                x=
                                 plug in your information to y-mx to find b

                               3rd plug in your m and b to y=mx+b

                         ****THE EQUATION OF A LINE in slope intercept form             y=mx+b 
                                     y is dependent variable, output
                                     m is the slope, the constant change
                                     x in the independent variable, input
                                     b the y intercept, where x =0, the initial value. y-mx



Module 4 Nonproportional Relationships
Non proportional relationship - When graphed it doesn't go through the orgin. The y intercept isn't 0.
Ordered Pair- 
   (x cooridinate , y cooridinate)   
                          
                                  Module 3 Proportional Relationships
                                  
Constant A value that doesn't change
Constant of proportionality The slope in a proportional relationship. y/x ratio will be proportional (equal constantly) for any given points on your line
Equivalent Ratios Ratio's that are equal. They are the same comparison.
Linear function When graphed its a line
Point A pair of coordinates telling you where to go on your graph. (x coordinate, y coordinate)
Proportion An equation showing two equal fractions (ratios).
Proportional relationship When graphed it will be a line that passes through the orgin (0,0). The function has a constant of proportionality. The y intercept (when x is zero) is 0. The slope is y/x.
Rate A comparison of two quantities in different units.  Example; Miles per hour
Rate of change / Slope. The rate the output, (dependent variable y) changes over the rate the input (independent variable x) increases. 
Slope The constant rate of change.   'M' in y=mx+b    The steepness of the line. Change of output (y) /change of input (x) increasing. 
Unit rate. What y is when x=1 How much one costs.
Y intercept What y equals when x = 0 Where the line crosses the y axis. 'b' in y=mx+b  The initial value. The one time charge. 


                          Module 2 Exponents and Scientific Notation
Base  A number that is raised to a power.
Exponent  The number that indicates the number of times the base is multiplied by itself. 'The small number'. An exponent tells what power to raise the base to.
Negative Exponent. THIS DOES NOT MEAN THE NUMBER IS NEGATIVE. You are dividing by the base raised to the given power.
               Laws of exponents     
                          Multiply Keep the base, add exponents
                          Divide Keep the base subtract exponents
                         Add or subtract  The numbers must be like terms and they stay like terms. DO NOT ADD EXPONENTS WHEN ADDING.
Scientific Notation A method of writing very large or very small numbers with two factors. The first factor is a number greater or equal to 1 and less than 10. The second factor is a power of ten. If the exponent is positive the value is large. If the exponent is negative the value is very small.
Standard Notation  The number not in scientific notation. The product of the two factors in scientific notation.
                   Operations in scientific notation.
                          Multiply or divide the first factors as normal, then follow laws of exponents for the second factor.
                          Add or Subtract. They must be like terms and they stay like terms.  The 2nd factors (powers of ten) must be the same
                          or they are not like terms. 
                   Decimal exponent patterns in scientific notation. Takys Rule!
                          If you move the decimal left add to the exponent
                          If you move the decimal right subtract to the exponent




Powered by Create your own unique website with customizable templates.